Volodymyr Khrabustovskyi

Position: associate Professor

Science degree, academic title: Ph.D. Physics and Mathematics, Associate Professor

Year of birth:

Education:

He graduated from the Faculty of Mechanics and Mathematics at Kharkiv A.M. Gorky State University in 1970 obtaining Diploma with Honours.

In 1976 he obtained C.Sc. (Ph.D.) degree in Physics and Mathematics (theory of functions and functional analysis). The thesis is defended at the Scientific Council of the Institute for Low Temperature Physics and Engineering of the USSR Academy of Sciences. Thesis title: “Problems in spectral theory and stability of solutions to systems of differential equations and their perturbations”; supervisor: senior research fellow C.Sc. F.S. Rofe-Beketov.

Scientific activity direction:

spectral theory of differential operators..

Author:

of more than 100 scientific publications and tutorials.

Awards and diplomas:

Featured publications:

  1. Khrabustovskii, V.I. The discrete spectrum of perturbed differential operators of arbitrary order with periodic matrix coefficients. Math. Notes 21, 467-472 (1977).
  2. Khrabustovskii, V.I. The spectral matrix of a periodic symmetric system whith a degenerate weight on the axis, Teor. Funktsii Functional. Anali Prilozten. 35, 1981, 111-119 (Russian).
  3. Khrabustovskii, V.I. Spectral analysis of periodic systems with degenerate weight on the axis and the semiaxis. J. Sov. Math. 48(3), 345-355 (1990)
  4. Khrabustovskii, V.I. Spectral analysis of periodic systems with degenerate weight (expansions in Bloch solutions). J. Sov. Math. 48(5), 598-607 (1990).
  5. Khrabustovskii, V.I. On a characteristic matrix of Weyl-Titchmarsh type for differential-operator equations which the spectral contains parameter in linear or in a Nevanlinnas manner. Mat. Fiz. Anal. Geom. 10(2), 205-227 (2003).
  6. Khrabustovsky, V.I. On the characteristic operators and projections and on the solutions of Weyl type of dissipative and accumulative operator systems. I : General case. Jh. Mat. Phys. Anal. Geom. 2(2), 149-175 (2006); II: Abstract theory. ibid. 2(3), 299-317 (2006); III: Separated boundary conditions. Ibid. 2(4), 449-473 (2006).
  7. Khrabustovskyi, V.I. On the limit of regular dissipative and self-adjoint boundary value problems with nonseparated boundary conditions when an interval stretches to the semiaxis. Jh. Mat. Phys. Anal. Geom. 5(1), 54-81 (2009).
  8. Khrabustovskyi, V.I. Expansion in eigenfunctions of relations generated by pair of operator differential expressions. Methods Funct. Anal. Topol. 15(2), 137-151 (2009).
  9. Khrabustovskyi, V.I. Analogos of generalized resolvents for relations by pair of differential operator expessions one of which depends on spectral parameter in nonlinear manner, J. Math. Phys. Anal. Geom.vol 9, no 4, 2013, 496-535.
  10. Khrabustovskyi, V.I. Eigenfunction expansions associated with operator differentional equation depending on spectral parameter nonlinearly. Methods Funct.Anal. Topology, vol 20, no.1, 2014, pp.68-91.
  11. Могульський Э.З., Храбустовський В.І., Бородай Г.П. Вступ до лінійної алгебри та аналітичної геометрії.–Навч. посібник.–Харків: Укр.ДАЗТ, 2007. – 128с.
  12. Могульський Є.З., Храбустовський В.І., Бородай Г.П. Теорія ймовірностей і математична статистика: Навчальний посібник.- Харків: УкрДУЗТ, 2016. –366 с.